DATABASE
ENCRYPTION

By: Samer Hamzeh
Hussein Ashmar

(o)

Algorlth ms

An algorithm is basically a procedure or a formula for solving a data snooping problem. An
encryption algorithm is a set of mathematical procedure for performing

Through the use of such an algorithm, information is made in the cipher text and requires the
use of a key to transforming the data into its original form. This brings us to the concept of
cryptography that has long been used in information security in communication systems.

Cryptography

Cryptography is a method of using advanced mathematical principles in storing and
transmitting data in a particular form so that only those whom it is intended can read and
process it. is a key concept in cryptography - It is a process whereby a message is
encoded in a format that cannot be read or understood by an eavesdropper. The technique is
old and was first used by Caesar to encrypt his messages using Caesar cipher. A plain text
from a user can be encrypted to a ciphertext, then send through a communication channel
and no eavesdropper can interfere with the plain text. When it reaches the receiver end, the
ciphertext is decrypted to the original plain text.

(o)

Cryptogra phy Terms:

Encryptlon: It is the process of locking up information using cryptography. Information
that has been locked this way is encrypted.

Decrypthn: The process of unlocking the encrypted information using cryptographic
techniques.

Key: A secret like a password used to encrypt and decrypt information. There are a few
different types of keys used in cryptography.

Stega nOgraphy: It is actually the science of hiding information from people who

would snoop on you. The difference between steganography and encryption is that the would-
be snoopers may not be able to tell there’s any hidden information in the first place.

Th reats

External Threats

v Hackers breach a software company’s
website, stealing credit card information.

Internal Threats

v' A disgruntled employee accesses confidential
salary information and distributes it.

Physical threats
v Thieves strike a data center.

The Encryption Process

Plaintext

Cyphertext

Plaintext

Sym metric key cryptography (‘j

Symmetric Encryption

Y

Secret Same Key Secret
Key Key

A4Sh*L@9. :E

1111

T6=#/>B#1
R06/J2.>1L
1PRL39P20

Plain Text Cipher Text Plain Text

Sym metric key cryptography &

m Algorithm: DES, 3DES AND AES
m Faster than asymmetric cryptography

m PROs

- Performance

m CON’s

- Key management: Since the same key is used both to encrypt and decrypt,
the key must be distributed to every entity that needs to work with the data

-If the key is obtained by an attacker, then confidentiality (and integrity) of data
are at risk

- Once the key is at the decrypting location, it must be secured so that an
attacker can not steal it

(o)

Asymmetric Encryption

Public Different Keys Secret
Key Key

q A4Sh*L@9. q

T6=#/>B#1 .
Decryptlon

R06/12.51L
1PRL39P20

Plain Text Cipher Text Plain Text

Asymmetric key (6

(i.e., public-private key) cryptography

The keys used to encrypt and decrypt the data are different This doesn't require a shared secret, BUT It
still requires the owner of the keys to keep secret the private key

Encryption = Public Key

Decryption > Secret Private Key

Difference Between Symmetric and Asymmetric Encryption

Symmetric encryption uses a single key that needs to be shared among the people who need to receive
the message while asymmetric encryption uses a pair of public key and a private key to encrypt and
decrypt messages when communicating.

Symmetric encryption is an old technique while asymmetric encryption is relatively new.

Asymmetric encryption was introduced to complement the inherent problem of the need to share the
key in symmetric encryption model, eliminating the need to share the key by using a pair of public-
private keys.

Asymmetric encryption takes relatively more time than the symmetric encryption.

10

(6
Encryption Algorithms: Data

— Encryption Standard

m DES has a short (56 bit) key plus 8 bits used for
parity checking

m Very susceptible to brute force attacks

m Now outdated - older versions of DBMS
encryption routines used DES e.g. early versions
of Oracle

11

DES (Data Encryption Standard)

% Steps of DES

L.

64-bit plain text block is given to Imitial
Permutation (IP) function.

[P performed on 64-bit plain text block.

[P produced two halves of the Eunputud
block known as Left Plan Text (LPT) and
Right Plamn Text (RPT).

Each LPT and RPT performed 16-rounds

of encryption process.

LPT and RPT rejomed and Fnal
Permutation (FP) 1s performed on
combined block!

Plain Text (64-bit)

Initial
Permutation(IP)

I 1

LPT RPT

Final Permutation
(FP)

12

| DES Block Clpher - Key Creation:

T'he last bit of each byte 1s used as a

1. 64bit Key > PC-1->Sbit KeyP ~ p@rity bit.
1. Divide Kpinto L, R

3. Rotate shift : ;
4. Concatenate L + R 57149141133 pﬁ 171 9

8 Kevli] -=PC-2 4

| 1 |58|50]42|34/|26]|18
110[2 [59/51]43[35(27
19/ 11| 3 [60[52]44]36
63]55(47[39]31]23]15
| 7 162]54]46/38(30
14/ 6 61]53|45/37
21]13] 5 [28]20]12
Permuted Choice -1

2
11

K= 00010011 00110100 01010111 01111001 10011000 10010100 11001000 11110001
Ke=1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
13

. Encryption Algorithms: (“"‘
Advanced Encryption Standard AES

m Keysize 128,192 or 256 bits

m Consists of a set of processing rounds - the
number varies depending on the key size e.g. 14
rounds for 256 length keys

m More secure

14

Cipher key
()

Plaintext

!

Ko (128 bits) —» AddRoundKey |

K1 (128 bits) ——r AddRoundKey |

_1 SEB_yles ‘
. ShifiRows

MixColumns

Round 1

Block to state - example

Texi

A'E 38 U S BE &8 AM AT R

[

X & Z

Hiexackes imeal

N4 12 M 12 4 o172 o0 0C o0 13 1

1

23

[k

|4

() 12 {0 li'I"i-
i 04 00 23
el 12 13 19
14 06 11 J‘.JL

Slale

15

SubByte

* During encryption each value of ~ "FESielsieTie
the state is replaced with the eL314s 4T AFARERLY

g & 5 7 53 A0 C% 38 L W IR PR BT AR 76
corresponding SBOX value bl abint el e o

§ oo TT 37 63 I8 B oAn wn 0T LE 06 LT BB OIT BE

* For EHE["I‘IFIIE HEH 15 WEI-LI-IEI E_Et :E':I £ 30 TA 1B GE SA ND 8T §W B4 MV 39 @R 3N B

- 5§ 30 00 ID 59t @i oSh Ek O3 BE BF 4k Coam o

FEFI!EEE'I:I "-'.I'Etl'l HEK D"—‘ i DO EF &i 7m 43 it BS &R Foof2 T S0 a0 ar Ad

T80 &S &b 8F 52 W 38CFS BC B SA I 0 FFOFR ol

[(W=l BE 50 BV M4 LT 4 LY TR A 4 D SR TR

B B0 3] 4F DCODD BN SOOEE E BE 54 04 BE EE dE B

N-EN-3% 30 GN 89 30 B0 EX-EDCAX ED Ll OFE H@ 7R

BETZE QT B E 20 (- K960 B-F EL B T AF OF

SUbBytE Exampre Bl FE 33 B 10 ki Bd cE El oo Tior e |: i Bk
i 70 3E mY kAl FF PEOOE KRR R1omW B 1 D MR

B Fg W 1L-B9 50 BE 96 bE 10 07 EW -85 IE I
FEG00 9% B e ol €6 1 #0200 S0 5 BE TR

0 12 0C o8] 63 @ 30
MM oW R 6 2%
Stite ; State
2 12 13 19 9 09 T M
400 119 FA 63 82 M

I [nvSublivie J¢

16

ShiftRows

= Each row is moved over (shifted) 1, 2 or 3 spaces over to the right,
depending on the row of the state.

« First row is never shifted Rowl 0 RowZ 1 Row3 2 Roed 3

TR TS T
'|-,|,|||_- | .-q b i

k.
|83 COIFI
F2|63] 30

{700 T4 FERH

P B W R D= e g

MixColumns

M EKCD I u m ns = The first residt byte is cadoulated by multiplying 4 walues of the
state column agsingt 4 values of the Girst row of the matria. The
resift of each muiltiplication s then X0DRsd to produce 1 Byte

= bl={bl™ 2}40R (b33 NOA |E3"1] M2A {b211]
* The MixCelumns transformation operates at the column level; it transforms each » The second result byte is calculated by multiphing the same 4

values of the state column against 4 values af the second row o
column of the state to a new column, Ul il de. Thie dessailt of wwibi lllluil'l.;:\..xl.l_'n b Lhseny MOR=d L

produce 1 Byre
= bEX={bl™ L} 90R [b2" 2] X0 (63" 3] K08 b1
= The third result byte s caloslated by multiplying the same 4
values of the ctzte olumn against 4 values ol the third row of

oo n thee matrix. The rescilt of each multipkcation is then X0DRed to
[03 o1 ol 0E 0B 0D 09 the matrix. The 2
lo1 02z 03 o1 Tnvesse |09 OE OB 0D ¢ BBl Y 1) A0R (0271 NOA (5372 N0R 147
1 ! i = The towrth result bygte b5 calculated by multiplying the same 4
i) i 02 03 an e O R values of the st2te column against 4 values of the Fourth sow of

thee riatrix, The result of each rnettiplecation s then ¥0Red to
i3 01 01 02 oBoon 0w Ok produice 1 Byte

* A= (bl * 3] ROR (hIS 1) BON (HA* 1) KO0 [ha®1)

C (‘l

Molciplication Matcis

RN
I-'I-'Hli
e
N'-ll-"i-"'

18 byte State

[E2 Thl b BA3
f'n_:l' BE 1O mid

BX BT BIE B1S
|I=-i- BN BLT 16

17

What is the acceptable (6,
. performance hit?

m Most shops avoid encrypting data because of fear of how it will

impact performance and code.

Take a sample Query from database:

SELECT c.companyname, ¢.contactname, ¢.address, c.city, c.country,

o.orderdate, o.requireddate, 0.shipaddress, o.shipcity, o.shipcountry

FROM Orders o

JOIN Customers ¢ ON (o.custid = ¢.custid)

WHERE o.shipcountry = ‘USA'

Before TDE is enabled, CPU

utilization averaged 22%
utilization for the duration of the
test. Query elapsed time was

about 48 ms.

After TDE is enabled using the
steps above and ran the same
query as before. CPU utilization

averaged 28% utilization for
the duration of the test. Query

elapsed time was about 253
ms.

18

(o)
Before Deciding on Encryption L

m Know the data and the database
- What should be encrypted?
— Which encryption algorithms?
- DBMS or external encryption?
- What is the acceptable performance hit?
- Who are you protecting against?
— Is the benefit worth the cost?

19

What should be encrypted?

The full database (i.e. all tables)

Partial Database Encryption: Cells (i.e., the value of a specific
row or field within a row)

20

(o)

Partial Data Encryption

m Partial encryption provides more granularity plus the data is not
decrypted until it is used

m Usually referring to column encryption although it can also be cell
level or encryption of DB objects such as triggers

m Rule of thumb - encrypting a single column is likely to produce a 5%
performance hit, but this varies wildly

21

(o)

(o)
Where should encryption/

— decryption be performed?

m The application must request encryption and decryption.

e CASE1 - In this case, keys are managed outside the DBMS (i.e.
encrypt/decryption performed by some package)

e CASE2 - In this case, keys are managed by the DBMS (i.e.
encrypt/decryption performed by functions provided by the DBMS);
however encryption/decryption has to be required by the application

e CASES - Encryption and decryption and key management are
performed by the DBMS engine “automatically”

22

(@)

Casel-Application-level
~ encryption

End users DBAs

LAN (or Intranet)

decrypt g |
- 4
“""“““&E ----- oems| []
=4 ! : Database

Crvot | * server host

T Organization

23

' (6
Casel-Application-level

encryption

m The database application developer uses an existing
encryption library and embeds the key in the code

m Keys are generated outside the DBMS (i.e. by the encryption
library).

m Hence the DBMS does not know the encryption keys

24

(o)

Casel-Application-level
~encryption

The application encrypts data before inserting them in the
DB. Schematically:

* Key = Cryptopackage.generatekey(param)
* Encdata = Cryptopackage.Encrypt(data, key, algo)
e SQL INSERT Encdata

e The application decrypts data after having read them
from the DB

e SQL SELECT data from Table
e Cryptopackage.Decrypt data

25

What may happen?

m As more applications need access to encrypted data, the key is
duplicated in those applications

m S0, the number of people which know the key may become very
large

m An attacker can easily extract the key from the code...

m Moreover, what happens if the organization decide to change the
key? find all applications using the key and modify them....

26

E CASE2 - Encryption /decryption are
called by the DB application

End users DBAs
- - v
@ o -
ol o o
“call” Encrypt & | LAN (or Intranet
4 Encrfpt & Decrypt | :)
T ecrypt |]
| /ApplicationT ZZ "~ |pBMmS ||
Application o | 2Ee0ese
server host h__li_;_ server host
Organization

I 27

CASE2 - Encryption /decryption are
called by the DB

m The application encrypts/decrypts data using a symmetric key
created (and stored by) the DBMS

m How to create a symmetric key in the DBMS (SQL server):
CREATE SYMMETRIC KEY (Transact-SQL statement)

CREATE SYMMETRIC KEY SSN_Key_01 WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE HeatlhC;

m The previous example creates a symmetric key called
SSN_Key_01 by using the AES 256 algorithm, and then
encrypts the new key with the key in certificate HeatlhC.

m The DBMS protects the symmetric key by encrypting it using
the key contained in a certificate

28

CASE2 the application
encrypts the data

m The application must obtain the key from the DBMS before using it:
m OPEN SYMMETRIC KEY (Decrypts and loads the key into memory)

m TRANSACT-SQL statement:

e OPEN SYMMETRIC KEY Key_name DECRYPTION BY
<decryption_mechanism>

* Key_name Is the name of the symmetric key to be opened

* Decryption mechanism is the mechanism used to encrypt the
symmetric key

Example:

* OPEN SYMMETRIC KEY SSN_Key_01 DECRYPTION BY CERTIFICATE
HeatlhC;

29

CASEZ2 the application
. encrypts the data

USE trialdb
GO

-- Create a column in which to store the encrypted data.
ALTER TABLE HumanResources.Employee

ADD EncryptedNationallDNumber varbinary(128); SEE NOTET on next slide
GO
-- Open the symmetric key with which to encrypt the data.
OPEN SYMMETRIC KEY SSN_Key_ 01
DECRYPTION BY CERTIFICATE HeatlhC;
-- Encrypt the value in column NationallDNumber with symmetric key
-- 3SN_Key 01. Save the result in column EncryptedNationallDNumber,
UPDATE HumanResources.Employee
SET EncryptedNationallDNumber

= EncryptByKey(Key GUID{'SSN_Key 01}, NationallDNumber); SEE NOTE1 an next
slidle

The Key GUID function returns the GUID of a symmetric key in the database. The GUID
serves as an identifier for the key and it is stored in metadata (SELECT key_guid FROM
sys.symmetric_keys). It is used for finding the corresponding key

CASE?2 the application
encrypts the data

m NOTE1L

* The symmetric key encryption functions all return varbinary data with
a maximum size of 8,000 bytes.

e The Decrypt functions return up to 8,000 bytes of clear text varbinary
data from encrypted cipher text, which also limits the amount of data
you can encrypt without breaking it into chunks.

e Since the Decrypt functions also return varbinary data, it is hecessary
to cast the decrypted data back to the original data type for use.

31

(o)
Whole Database Encryption

The whole database is encrypted

This protects the data at rest but requires
decryption for use

Whole DB encryption has traditionally been
regarded as too expensive - SQL Server TDE,
new with 2008, claims to reduce the
performance hit but still acknowledges a cost

(1)

32

' transparent to the BD

CASE3 - Encryption / decryption are

End users DBAs
- -
St IR
o /8
| / |
Encrypt & | ‘
Decrypt |
~ ||/Applications ~” Z ~ Z | pBMS ﬁ

Application

~——— Database
server host |

B . server host

—

LAN (or Intranet)

Organization

33

The Windows Data Protection API protects
the service master key in the master database.

The service master key protects
the database master key in the master database.

The database master key protects the certificate’s
private key in the master database.

The certificate protects the database encryption key
in the user database.

The database encryption key protects the data
in the user database.

SOL Server data

master
database

user
database

34

(o)

E CASE3 - Encryption/decryption are
transparent to the DB

m Transparent data encryption (TDE) executes encryption and
decryption within the database engine itself. This method
doesn’t require code modification of the database or
application and is easier for admins to manage. Since it’'s a
particularly popular method of database encryption.

35

G
CASES3 - Encryption/decryption are (

transparent to the BD

m This type of encryption is “transparent” because it is

invisible to users and applications that are drawing on
the data and is easily used without making any
application-level changes. It is decrypted for authorized
users or applications when in use but remains protected
at rest. Even if the physical media is compromised or
the files stolen, the data as a whole remains
unreadable—only authorized users can successfully
read the data

This provides a disincentive for hackers to steal the data
at all. When all is said and done, using TDE can help a
business remain in compliance with a range of specific
security regulations.

36

G
E CASE3 - Encryption/decryption are transparl.d
to the BD

m TDE performs real-time |/O encryption and decryption of
the data and log files. The encryption uses a database
encryption key (DEK), which is stored in the database
boot record for availability during recovery.

m The DEK is a symmetric key secured by using a
certificate stored in the master database of the server

m Encryption of the database file is performed at the page
level. The pages in an encrypted database are
encrypted before they are written to disk and decrypted
when read into memory.

37

E CASE3 - Encryption/decryption are
transparent to the BD

m With TDE, the user DB application does not have to
encrypt/derypt data by itself

m With TDE, all the database tables are encrypted

38

(6,

(o)

TDE - encryption key
~ hierarchy

m Purpose: to organize encryption keys in a cryptography
hierarchy

m A Service Master Key (SKM) is associated with each DB
server instance. This SKM is protected by the Windows OS

via Windows Data Protection Api

SQL server
instance1

SMK1 7] SMK2 [§7

Windows OS

SQL server
instance?2

(6
.TDE encryption key

hierarchy

The SMK protects the database master key (DMK), which is
stored at the user database level and which in turn protects
certificates and symmetric keys. These in turn protect
symmetric keys, which protect the data.

~——, Certificate protecting symmetric key

p—— SMK1
DMK @ Database | > &= @

| <
—— DMK

SQL server SQL server @1

instance1 instance2
: -) &A=

SMK1 [@Vf’l SMK2 @ Symmetric key protects data

Windows OS | In the database

(6
Example

USE master;

G

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<UseStrongPasswordHere:';
go

CREATE CERTIFICATE MySerwverCert WITH SUBJECT = "My DEK Certificate’;
EQ

USE AdventureWorkszel2;

GO0

CREATE DATABASE EMCRYPTIOM KEY

WITH ALGORITHM = AES 12%

EMCRYPTION BY SERVER CERTIFICATE MySerwerCert;

G0

ALTER DATABASE AdventureWorkszoilz

SET EMNCRYPTION OM;

GO0

CREATE MASTER KEY ENCRYPTION BY PASSWORD creates an symmetric key; This key is
encrypted by using triple DES and the user-supplied password

a1

(& Comparison with cell-level
~encryption

m Cell-level encryption has some advantages over DB-
level encryption:

-If offers a more granular level of encryption; one needs only to encrypt the data that
are sensitive

- Data is not decrypted until it is used so that even if a page is loaded in memory,
sensitive data is not in clear text

- It supports explicit key management; users can have their own keys for their own data

m And some disadvantages:

- Applications have to be changed

- The domains of columns storing encrypted data need to be changed to varbinary

42

(o)

(o)

Additional Considerations

m [DE and cell-level encryption accomplish two different
objectives:

- if the amount of data that must be encrypted is very small or if
the application can be custom designed to use it and
performance is not a concern, cell-level encryption is to be
preferred

- Otherwise, TDE is to be preferred

43

References

1. https://www.ssl|2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-
differences#:~:text=Symmetric%20encryption%20uses%20a%20single,and%20d
ecrypt%20messages%20when%20communicating.

2. https://docs.microsoft.com/en-us/sql/relational-
databases/security/encryption/transparent-data-
encryption?redirectedfrom=MSDN&view=sql-server-verls

3. https://docs.microsoft.com/en-us/sql/t-sql/statements/create-symmetric-key-
transact-sql?redirectedfrom=MSDN&view=sql-server-ver1l5

4, http://msdn.microsoft.com/en-us/library/cc278098.aspx

5. http://msdn.microsoft.com/en-us/library/bb934049.aspx

6. http://www.tropsoft.com/strongenc/des3.htm

44

