
DATABASE
ENCRYPTION

By: Samer Hamzeh
Hussein Ashmar

1

A Truly Secure Database

2

Encryption
Algorithms
An algorithm is basically a procedure or a formula for solving a data snooping problem. An
encryption algorithm is a set of mathematical procedure for performing encryption on data.
Through the use of such an algorithm, information is made in the cipher text and requires the
use of a key to transforming the data into its original form. This brings us to the concept of
cryptography that has long been used in information security in communication systems.

Cryptography
Cryptography is a method of using advanced mathematical principles in storing and
transmitting data in a particular form so that only those whom it is intended can read and
process it. Encryption is a key concept in cryptography – It is a process whereby a message is
encoded in a format that cannot be read or understood by an eavesdropper. The technique is
old and was first used by Caesar to encrypt his messages using Caesar cipher. A plain text
from a user can be encrypted to a ciphertext, then send through a communication channel
and no eavesdropper can interfere with the plain text. When it reaches the receiver end, the
ciphertext is decrypted to the original plain text.

3

Encryption
Cryptography Terms:
Encryption: It is the process of locking up information using cryptography. Information
that has been locked this way is encrypted.

Decryption: The process of unlocking the encrypted information using cryptographic
techniques.

Key: A secret like a password used to encrypt and decrypt information. There are a few

different types of keys used in cryptography.

Steganography: It is actually the science of hiding information from people who
would snoop on you. The difference between steganography and encryption is that the would-
be snoopers may not be able to tell there’s any hidden information in the first place.

4

Threats

5

 External Threats
Hackers breach a software company’s

website, stealing credit card information.

 Internal Threats
 A disgruntled employee accesses confidential

salary information and distributes it.

 Physical threats
 Thieves strike a data center.

6

The Encryption Process

Encrypt DecryptPlaintext PlaintextCyphertext

7

Symmetric key cryptography

Symmetric key cryptography

■ Algorithm: DES, 3DES AND AES

■ Faster than asymmetric cryptography

■ PROs

- Performance

■ CON’s

- Key management: Since the same key is used both to encrypt and decrypt,
the key must be distributed to every entity that needs to work with the data

-If the key is obtained by an attacker, then confidentiality (and integrity) of data
are at risk

- Once the key is at the decrypting location, it must be secured so that an
attacker can not steal it

8

9

Asymmetric key

• (i.e., public-private key) cryptography

• The keys used to encrypt and decrypt the data are different This doesn't require a shared secret, BUT It
still requires the owner of the keys to keep secret the private key

• Encryption Public Key

• DecryptionSecret Private Key

• Difference Between Symmetric and Asymmetric Encryption

• Symmetric encryption uses a single key that needs to be shared among the people who need to receive
the message while asymmetric encryption uses a pair of public key and a private key to encrypt and
decrypt messages when communicating.

• Symmetric encryption is an old technique while asymmetric encryption is relatively new.

• Asymmetric encryption was introduced to complement the inherent problem of the need to share the
key in symmetric encryption model, eliminating the need to share the key by using a pair of public-
private keys.

• Asymmetric encryption takes relatively more time than the symmetric encryption.

10

Encryption Algorithms: Data
Encryption Standard

■ DES has a short (56 bit) key plus 8 bits used for
parity checking

■ Very susceptible to brute force attacks

■ Now outdated – older versions of DBMS
encryption routines used DES e.g. early versions
of Oracle

11

12

13

Encryption Algorithms:
Advanced Encryption Standard AES

■ Key size 128,192 or 256 bits

■ Consists of a set of processing rounds – the
number varies depending on the key size e.g. 14
rounds for 256 length keys

■ More secure

14

15

16

17

What is the acceptable
performance hit?

■ Most shops avoid encrypting data because of fear of how it will
impact performance and code.

Take a sample Query from database:

18

Before TDE is enabled, CPU

utilization averaged 22%
utilization for the duration of the
test. Query elapsed time was

about 48 ms.

After TDE is enabled using the
steps above and ran the same
query as before. CPU utilization

averaged 28% utilization for
the duration of the test. Query

elapsed time was about 253
ms.

Before Deciding on Encryption

■ Know the data and the database
– What should be encrypted?

– Which encryption algorithms?

– DBMS or external encryption?

– What is the acceptable performance hit?

– Who are you protecting against?

– Is the benefit worth the cost?

19

What should be encrypted?

■ The full database (i.e. all tables)

■ Partial Database Encryption: Cells (i.e., the value of a specific
row or field within a row)

20

Partial Data Encryption

■ Partial encryption provides more granularity plus the data is not
decrypted until it is used

■ Usually referring to column encryption although it can also be cell
level or encryption of DB objects such as triggers

■ Rule of thumb – encrypting a single column is likely to produce a 5%
performance hit, but this varies wildly

21

Where should encryption/
decryption be performed?

■ The application must request encryption and decryption.

• CASE1 - In this case, keys are managed outside the DBMS (i.e.
encrypt/decryption performed by some package)

•CASE2 - In this case, keys are managed by the DBMS (i.e.
encrypt/decryption performed by functions provided by the DBMS);
however encryption/decryption has to be required by the application

• CASE3 - Encryption and decryption and key management are
performed by the DBMS engine “automatically”

22

Case1-Application-level
encryption

23

Case1-Application-level
encryption

■ The database application developer uses an existing
encryption library and embeds the key in the code

■ Keys are generated outside the DBMS (i.e. by the encryption
library).

■ Hence the DBMS does not know the encryption keys

24

Case1-Application-level
encryption

The application encrypts data before inserting them in the
DB. Schematically:

• Key = Cryptopackage.generatekey(param)

• Encdata = Cryptopackage.Encrypt(data, key, algo)

• SQL INSERT Encdata

• The application decrypts data after having read them
from the DB

• SQL SELECT data from Table

• Cryptopackage.Decrypt data

25

What may happen?
■ As more applications need access to encrypted data, the key is

duplicated in those applications

■ So, the number of people which know the key may become very
large ….

■ An attacker can easily extract the key from the code…

■ Moreover, what happens if the organization decide to change the
key? find all applications using the key and modify them….

26

CASE2 – Encryption /decryption are
called by the DB application

27

CASE2 – Encryption /decryption are
called by the DB

■ The application encrypts/decrypts data using a symmetric key
created (and stored by) the DBMS

■ How to create a symmetric key in the DBMS (SQL server):

CREATE SYMMETRIC KEY (Transact-SQL statement)

CREATE SYMMETRIC KEY SSN_Key_01 WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE HeatlhC;

■ The previous example creates a symmetric key called
SSN_Key_01 by using the AES 256 algorithm, and then
encrypts the new key with the key in certificate HeatlhC.

■ The DBMS protects the symmetric key by encrypting it using
the key contained in a certificate

28

CASE2 the application
encrypts the data

■ The application must obtain the key from the DBMS before using it:

■ OPEN SYMMETRIC KEY (Decrypts and loads the key into memory)

■ TRANSACT-SQL statement:

• OPEN SYMMETRIC KEY Key_name DECRYPTION BY
<decryption_mechanism>

• Key_name Is the name of the symmetric key to be opened

• Decryption mechanism is the mechanism used to encrypt the
symmetric key

Example:

• OPEN SYMMETRIC KEY SSN_Key_01 DECRYPTION BY CERTIFICATE
HeatlhC;

29

CASE2 the application
encrypts the data

30

CASE2 the application
encrypts the data

■ NOTE1

• The symmetric key encryption functions all return varbinary data with
a maximum size of 8,000 bytes.

• The Decrypt functions return up to 8,000 bytes of clear text varbinary
data from encrypted cipher text, which also limits the amount of data
you can encrypt without breaking it into chunks.

• Since the Decrypt functions also return varbinary data, it is necessary
to cast the decrypted data back to the original data type for use.

31

Whole Database Encryption

■ The whole database is encrypted

■ This protects the data at rest but requires
decryption for use

■ Whole DB encryption has traditionally been
regarded as too expensive – SQL Server TDE,
new with 2008, claims to reduce the
performance hit but still acknowledges a cost
(1)

32

CASE3 – Encryption / decryption are
transparent to the BD

33

34

(2)

CASE3 – Encryption/decryption are
transparent to the DB

■ Transparent data encryption (TDE) executes encryption and
decryption within the database engine itself. This method
doesn’t require code modification of the database or
application and is easier for admins to manage. Since it’s a
particularly popular method of database encryption.

35

CASE3 – Encryption/decryption are
transparent to the BD

■ This type of encryption is “transparent” because it is
invisible to users and applications that are drawing on
the data and is easily used without making any
application-level changes. It is decrypted for authorized
users or applications when in use but remains protected
at rest. Even if the physical media is compromised or
the files stolen, the data as a whole remains
unreadable—only authorized users can successfully
read the data

■ This provides a disincentive for hackers to steal the data
at all. When all is said and done, using TDE can help a
business remain in compliance with a range of specific
security regulations.

36

CASE3 – Encryption/decryption are transparent
to the BD

■ TDE performs real-time I/O encryption and decryption of
the data and log files. The encryption uses a database
encryption key (DEK), which is stored in the database
boot record for availability during recovery.

■ The DEK is a symmetric key secured by using a
certificate stored in the master database of the server

■ Encryption of the database file is performed at the page
level. The pages in an encrypted database are
encrypted before they are written to disk and decrypted
when read into memory.

37

CASE3 – Encryption/decryption are
transparent to the BD

■ With TDE, the user DB application does not have to
encrypt/derypt data by itself

■ With TDE, all the database tables are encrypted

38

TDE – encryption key
hierarchy

■ Purpose: to organize encryption keys in a cryptography
hierarchy

■ A Service Master Key (SKM) is associated with each DB
server instance. This SKM is protected by the Windows OS
via Windows Data Protection Api

39

TDE – encryption key
hierarchy

■ The SMK protects the database master key (DMK), which is
stored at the user database level and which in turn protects
certificates and symmetric keys. These in turn protect
symmetric keys, which protect the data.

40

Example

41

CREATE MASTER KEY ENCRYPTION BY PASSWORD creates an symmetric key; This key is
encrypted by using triple DES and the user-supplied password

Comparison with cell-level
encryption

■ Cell-level encryption has some advantages over DB-
level encryption:
-If offers a more granular level of encryption; one needs only to encrypt the data that
are sensitive

- Data is not decrypted until it is used so that even if a page is loaded in memory,
sensitive data is not in clear text

- It supports explicit key management; users can have their own keys for their own data

■ And some disadvantages:
- Applications have to be changed

- The domains of columns storing encrypted data need to be changed to varbinary

42

Additional Considerations

■ TDE and cell-level encryption accomplish two different
objectives:

- if the amount of data that must be encrypted is very small or if
the application can be custom designed to use it and
performance is not a concern, cell-level encryption is to be
preferred

- Otherwise, TDE is to be preferred

43

References
1. https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-

differences#:~:text=Symmetric%20encryption%20uses%20a%20single,and%20d
ecrypt%20messages%20when%20communicating.

2. https://docs.microsoft.com/en-us/sql/relational-
databases/security/encryption/transparent-data-
encryption?redirectedfrom=MSDN&view=sql-server-ver15

3. https://docs.microsoft.com/en-us/sql/t-sql/statements/create-symmetric-key-
transact-sql?redirectedfrom=MSDN&view=sql-server-ver15

4. http://msdn.microsoft.com/en-us/library/cc278098.aspx

5. http://msdn.microsoft.com/en-us/library/bb934049.aspx

6. http://www.tropsoft.com/strongenc/des3.htm

44

